604 research outputs found

    Phase diagram of an exactly solvable t-J ladder model

    Full text link
    We study a system of one-dimensional t-J models coupled to a ladder system. A special choice of the interaction between neighbouring rungs leads to an integrable model with supersymmetry, which is broken by the presence of rung interactions. We analyze the spectrum of low-lying excitations and ground state phase diagram at zero temperature.Comment: LaTeX, 8 pp. incl. 1 figur

    Phase diagram of the su(8) quantum spin tube

    Full text link
    We calculate the phase diagram of an integrable anisotropic 3-leg quantum spin tube connected to the su(8) algebra. We find several quantum phase transitions for antiferromagnetic rung couplings. Their locations are calculated exactly from the Bethe Ansatz solution and we discuss the nature of each of the different phases.Comment: 10 pages, RevTeX, 1 postscript figur

    The active form of quinol-dependent Nitric Oxide reductase (qNOR) from Neisseria meningitidis is a dimer

    Get PDF
    Neisseria meningitidis is carried by nearly a billion humans, causing developmental impairment and over 100 000 deaths a year. A quinol-dependent nitric oxide reductase (qNOR) plays a critical role in the survival of the bacterium in the human host. X-ray crystallographic analyses of qNOR, including that from N. meningitidis (NmqNOR) reported here at 3.15 Å resolution, show monomeric assemblies, despite the more active dimeric sample being used for crystallization. Cryo-electron microscopic analysis of the same chromatographic fraction of NmqNOR, however, revealed a dimeric assembly at 3.06 Å resolution. It is shown that zinc (which is used in crystallization) binding near the dimer-stabilizing TMII region contributes to the disruption of the dimer. A similar destabilization is observed in the monomeric (∼85 kDa) cryo-EM structure of a mutant (Glu494Ala) qNOR from the opportunistic pathogen Alcaligenes (Achromobacter) xylosoxidans, which primarily migrates as a monomer. The monomer–dimer transition of qNORs seen in the cryo-EM and crystallographic structures has wider implications for structural studies of multimeric membrane proteins. X-ray crystallographic and cryo-EM structural analyses have been performed on the same chromatographic fraction of NmqNOR to high resolution. This represents one of the first examples in which the two approaches have been used to reveal a monomeric assembly in crystallo and a dimeric assembly in vitrified cryo-EM grids. A number of factors have been identified that may trigger the destabilization of helices that are necessary to preserve the integrity of the dimer. These include zinc binding near the entry of the putative proton-transfer channel and the preservation of the conformational integrity of the active site. The mutation near the active site results in disruption of the active site, causing an additional destabilization of helices (TMIX and TMX) that flank the proton-transfer channel helices, creating an inert monomeric enzyme

    Note on the thermodynamic Bethe Ansatz approach to the quantum phase diagram of the strong coupling ladder compounds

    Get PDF
    We investigate the low-temperature phase diagram of the exactly solved su(4) two-leg spin ladder as a function of the rung coupling JJ_{\perp} and magnetic field HH by means of the thermodynamic Bethe Ansatz (TBA). In the absence of a magnetic field the model exhibits three quantum phases, while in the presence of a strong magnetic field there is no singlet ground state for ferromagnetic rung coupling. For antiferromagnetic rung coupling, there is a gapped phase in the regime H H_{c2} and a Luttinger liquid magnetic phase in the regime H_{c1} < H < H_{c2}. The critical behaviour derived using the TBA is consistent with the existing experimental, numerical and perturbative results for the strong coupling ladder compounds. This includes the spin excitation gap and the critical fields H_{c1} and H_{c2}, which are in excellent agreement with the experimental values for the known strong coupling ladder compounds (5IAP)_2CuBr_4 2H_2 O, Cu_2(C_5 H_{12} N_2)_2 Cl_4 and (C_5 H_{12} N)_2 CuBr_4. In addition we predict the spin gap ΔJ1/2J\Delta \approx J_{\perp}-{1/2}J_{\parallel} for the weak coupling compounds with JJJ_{\perp} \sim J_{\parallel}, such as (VO)_2 P_2 O_7, and also show that the gap opens for arbitrary J/JJ_{\perp}/ J_{\parallel}.Comment: 10 pages, 3 figure

    Staggered Anisotropy Parameter Modification of the Anisotropic tJt-J Model

    Full text link
    The anisotropic t-J model (Uq(gl(21))U_q(gl(2|1)) Perk-Schultz model) with staggered disposition of the anisotropy parameter along a chain is considered and the corresponding ladder type integrable model is constructed. This is a generalisation to spin-1 case of the staggered XXZXXZ spin-1/2 model considered earlier. The corresponding Hamiltonian is calculated and, since it contains next to nearest neighbour interaction terms, can be written in a zig-zag form. The Algebraic Bethe Ansatz technique is applied and the eigenstates, along with eigenvalues of the transfer matrix of the model are found.Comment: 21 pages, Latex2e with amsfonts packag

    Integrity of H1 helix in prion protein revealed by molecular dynamic simulations to be especially vulnerable to changes in the relative orientation of H1 and its S1 flank

    Full text link
    In the template-assistance model, normal prion protein (PrPC), the pathogenic cause of prion diseases such as Creutzfeldt-Jakob (CJD) in human, Bovine Spongiform Encephalopathy (BSE) in cow, and scrapie in sheep, converts to infectious prion (PrPSc) through an autocatalytic process triggered by a transient interaction between PrPC and PrPSc. Conventional studies suggest the S1-H1-S2 region in PrPC to be the template of S1-S2 β\beta-sheet in PrPSc, and the conformational conversion of PrPC into PrPSc may involve an unfolding of H1 in PrPC and its refolding into the β\beta-sheet in PrPSc. Here we conduct a series of simulation experiments to test the idea of transient interaction of the template-assistance model. We find that the integrity of H1 in PrPC is vulnerable to a transient interaction that alters the native dihedral angles at residue Asn143^{143}, which connects the S1 flank to H1, but not to interactions that alter the internal structure of the S1 flank, nor to those that alter the relative orientation between H1 and the S2 flank.Comment: A major revision on statistical analysis method has been made. The paper now has 23 pages, 11 figures. This work was presented at 2006 APS March meeting session K29.0004 at Baltimore, MD, USA 3/13-17, 2006. This paper has been accepted for pubcliation in European Biophysical Journal on Feb 2, 200
    corecore